Compactness theorem
- 网络紧致性定理
-
A compactness theorem for finite fields and Its Applications
有限域的紧致性定理及其应用
-
As a particular of Rado 's theorem and the compactness theorem one obtains the following result .
作为Rado定理和紧致性定理的一种特殊情形,我们得到下面的结果。
-
The existence of the optimal control for the system is demonstrated via compactness theorem and prior estimates .
根据预备知识,利用紧性定理和先验估计,证明了系统最优控制的存在性。
-
A compactness theorem of abstract semantics
关于抽象逻辑紧致性的一个定理
-
A compactness theorem for uncountable fields
不可数域的一个紧致性定理
-
First , the existence of the global generalized and classical solution to the above problem are proved by use of the Galerkin method and compactness theorem .
首先,应用Galerkin方法和紧致性定理证明上述问题整体广义解和整体古典解的存在性和惟一性;
-
The main result is : For a finite-separable regular logical system which is stronger than if LST theorem and ω _1 compactness theorem hold on it , then .
主要结果是:如果是一强于的可有限分离的正规逻辑系统,且在上LST定理和ω1-紧致性定理成立,则与等价。
-
The equivalence of some propositions describing the continuity of real numbers and coordinate plane is proved , for example : In the coordinate plane , using the compactness theorem the Cauchy convergence principle is proved ;
证明了描述数直线和坐标平面的连续性的一些命题的等价性,如在坐标平面上,用致密性定理证明Cauchy收敛准则;